# Weill Cornell Medical Research Building 413 E. 69<sup>th</sup> Street New York, NY



# Jonathan Coan

Structural Option

Advisor: Dr. Boothby

# Technical Report 1

9/23/11

# Table of Contents

| Executive Summary                    | 3  |
|--------------------------------------|----|
| Introduction                         | 4  |
| Structural Systems                   | 5  |
| Foundation System                    | 5  |
| Floor System                         | 6  |
| Lateral System                       | 7  |
| Beams and Columns                    | 8  |
| Design Codes and Standards           | 9  |
| Structural Material                  | 9  |
| Building Loads                       | 12 |
| Dead and Live Load                   | 12 |
| Snow Load                            | 12 |
| Wind Load                            | 13 |
| Seismic Load                         | 16 |
| Gravity Load Spot Checks             | 17 |
| Typical Beam                         | 17 |
| Typical Column                       | 17 |
| Conclusion                           | 18 |
| Appendix A: Snow Load                | 19 |
| Appendix B: Seismic Load             | 20 |
| Appendix C: Wind Load                | 22 |
| Appendix D: Gravity Load Spot Checks | 23 |
| Appendix E: Lateral System Elements  | 26 |

# **Executive Summary**

The following Technical Report analyzes the existing conditions of the Weill Cornell Medical Research Building located on E. 69<sup>th</sup> Street in New York City. Plans were provided by Severud Associates. Architectural images courtesy of Ennead Architects (formerly Polshek Partnership Architects, LLP). An analysis of various loading conditions as well as spot checks was carried out using the newest applicable codes and standards.

The building consists mostly of concrete with two way slabs and concrete beams and columns. There is some structural steel at the top for mechanical and window washing equipment. The lateral system consists of Ordinary Reinforced Concrete Shear Walls as well as a few large columns.

ASCE 7-05 was used to determine loads on the building. Snow, Seismic, Wind, and Gravity loads were analyzed. Analysis of snow load resulted in the value of 17.3 psf which is less than the roof live load of 30 psf. Seismic analysis resulting in a base shear value of 979.6 kips and an overturning moment of 191,420 k-ft. Wind load were calculated to produce a base shear of 2,548 kips and overturning moment of 205,488 k-ft in the North-South direction and a base shear of 856 kips and overturning moment of 21,949 k-ft in the East-West direction. This means that wind loads control in the North-South direction, but seismic loads are greater in the East-West direction.

Spot checks of typical members under gravity loads showed that typical beams are adequate for strength and spacing while typical columns appear to be overdesigned. This could be due to a few errors in load calculation or perhaps the assumption that the column is only loaded axially.

# Introduction

The Weill Cornell Medical Research Building is the newest addition to the campus of the Weill Cornell Medical College on the upper east side of Manhattan. Located at 413 East 69<sup>th</sup> Street in New York City, the Medical Research Building is adjacent to other Weill Cornell buildings. The Weill Greenberg Center on its northeast side is an educational facility designed by the same architects as the Medical Research Building. Olin Hall to the east, and the Lasdon House to the north are residential buildings that house undergraduate and graduate students of the medical college. 69<sup>th</sup> Street slopes down to the east across the site of the Medical Research Building and the utilities run under it. The Conn. Edison power vaults are also located under 69<sup>th</sup> Street and the sidewalk in front of the building.

The \$650 million Medical Research Building is approximately 455,000 square feet with three stories below grade and eighteen, plus a penthouse and an interstitial floor, above grade. The total height of the building above grade is 294'-6." Floors 4-16 are dedicated to laboratory space. The first basement level, as well as the interstitial floor between floors 16 and 17, and the 17<sup>th</sup> and 18<sup>th</sup> floors are designated as mechanical floors. The bottom two levels of the basement contain the MRB's animal facility. Service and freight elevators and vertical circulation are located on the west side of the building next to the loading docks on the 69<sup>th</sup> Street side. Passenger elevators and vertical circulation are nearer the center of the building where the two story lobby atrium welcomes people into this hub of scientific exploration.

In the back of the building, off of the second floor, there is a terrace that bridges the gap between the rear façade of the MRB and the Lasdon House. A grand staircase leads from the lobby on the ground floor up to the enclosed lounge on the second floor that opens onto the terrace. There are two entryways from the Lasdon House to the terrace so anyone living in that building and working in the Medical Research Building would have easy access. The terrace also wraps around the side of the Lasdon House and connects to a stairway leading down to the sidewalk on  $70^{\text{th}}$  street.

The building is defined visually by the undulating glass sunshade curtain wall across the front of the building. This curtain wall is attached to the floor slabs that are cantilevered

out approximately 12'-8" from the exterior row of columns to meet it. The curtain wall itself has two layers. The outer layer features the glass sunshade wall with aluminum mullions. That is tied to the inner layer of insulated glass (also with aluminum mullions) by aluminum. The inner layer is anchored to the slab either directly through the mullion or with a steel outrigger.

# Structural Systems

### Foundation System

The foundation system consists of spread footings bearing on undisturbed bedrock with strap beams as necessary around the perimeter. This undisturbed bedrock is required to support 40 tons per square foot. According to the geotechnical report, there are two types of bedrock encountered on the site. One which supports 40 tsf and the other 60 tsf, but it is recommended by Langan Engineering and Environmental Services that the footings be designed to rest on 40 tsf bedrock. The slab on grade is a 6" concrete slab resting on a 3" mud slab on 24" of crushed stone. The perimeter concrete walls of the basement are 20" thick with strip footings. Below, Figure 1 is an image of the foundation plan.

The geotechnical report also states that the water table is approximately 50 feet above the foundation level. This poses the problem of seepage through the rock and also uplift on the foundation. A few different design solutions are presented in the report. The resolution of this problem comes in the form of 4-50 ton rock anchors located at the bottom of Stairwell B on the East side of the building to resist the uplift.



Figure 1: Basement Level 3 - Foundation Plan

### Floor System

The floor system in the Medical Research Building is 2 way flat plate concrete slabs. These slabs vary in depth from floor to floor (see Figure 2 below). The bottom reinforcement is typically #5 bars at 12." Top reinforcement and additional bottom reinforcement varies as needed throughout the building. The slabs are especially thick in this building because much of the design was constrained by strict vibration requirements of the medical and research equipment in the building. Laboratory floors were designed to limit vibration velocities to 2000 micro-inches per second. Walking paces were assumed to be moderate (75 footfalls per minute) in the labs and corridors and fast (100 footfalls per minute) only in public areas such as the lobby. There are also vertical HSS members every other floor through the middle of the building where the laboratories are located. These members serve no structural load bearing purpose, they are simply meant to tie each floor to another floor to further limit vibrations by forcing any impact to vibrate two floors instead of just one.

|              | Slab Depth |
|--------------|------------|
| Floor        | (in)       |
| B3           | 6          |
| B2           | 12.5       |
| B1           | 12.5       |
| 1            | 11         |
| 2            | 12         |
| 3            | 12.5       |
| 4            | 12.5       |
| 5            | 12.5       |
| 6            | 12.5       |
| 7            | 12.5       |
| 8            | 12.5       |
| 9            | 12.5       |
| 10           | 12.5       |
| 11           | 12.5       |
| 12           | 12.5       |
| 13           | 12.5       |
| 14           | 12.5       |
| 15           | 12.5       |
| 16           | 12.5       |
| Interstitial | 10.5       |
| 17           | 10.5       |
| 18           | 12.5       |
| 19           | 10.5       |

Figure 2: Slab Depth per Floor

### Lateral System

Lateral loads, such as seismic and wind loads, are primarily resisted by 12"-14" concrete shear walls located around the stairwells and elevator cores. A couple of these shear walls step in at the second floor. Extra precautions were taken to make sure that the lateral moment still has a viable path to travel through that step in. Severud, the structural engineers for the project, desired to transfer lateral loads toward the perimeter of the building. In the front of the building there are massive  $12/14 \times 72$  inch columns from which the slabs cantilever out and the glass sunshade curtain wall is hung. These columns also take some of the lateral loads. See the sketch in Appendix E for the location of lateral system elements on a typical floor.

### Beams and Columns

There is a very wide variety of beam and column sizes in this building. There are almost forty different sizes of columns with dimensions ranging from 12" to 84," with the most typical column being 24 x 36, and approximately fifty five different sizes of beams ranging from 8 x24 to 84 x 48. Except on the laboratory floors, which are quite uniform, the column sizes tend to change from floor to floor. Extra precaution was taken during design and reinforcement was provided to ensure the continuity of the load path through these column transfers.

Columns are located on the specified grid of 4 major rows in the East-West direction for the majority of the floors—except the first floor and below grade, which have a fifth row in the back of the building. Bay sizes are 27'-7," 25'-0," and 16'-3" in the North-South direction and the typical bay in the East-West direction is 21'-0" with end spans approximately 22'-6." Beams, however, are only placed where they are needed. They are rarely in the same place from floor to floor and each floor has a different number of beams. The fourth floor has the fewest with 6, and the second floor has the most with 33. Below in Figure 3 is a typical framing plan for the 5<sup>th</sup>-15<sup>th</sup> floors.



Figure 3: Typical Framing Plan – 5<sup>th</sup>-15<sup>th</sup> Floors

# **Design Codes and Standards**

The Weill Cornell Medical Research Building was designed according to the 1968 New York City Building Code based on the UBC. In 2008 New York City updated their building code, which is now based on the IBC. For this report, the new 2008 code for analysis and design is being used; which references ASCE 7-02, ACI 318-02, etc. For relevance, ASCE 7-05, ACI 318-08, and the AISC Steel Construction Manual 14<sup>th</sup> ed. will be referenced in this report. The design for the Medical Research Building was submitted in 2008 and the project team decided to file under the old code. The MRB is located in New York City's zoning district R8, the use group is 3 (college), the construction class is I-C, and the occupancy group is D-2.

## Structural Materials

The Medical Research Building is a predominantly concrete structure. The  $f'_{\rm c}$  of the concrete varies throughout. See the table below in Figure 4 for the strength of concrete per floor.

On the roof and penthouse levels, there are structural steel members that frame platforms for mechanical equipment (cooling towers on the roof level), and also the window washing platform on the penthouse level. This penthouse level platform provides the means from which the window washing apparatus are hung and operated.

Steel members include W14s as horizontal framing members and HSS 10x8x5/8 for the perimeter. Columns, some of which extend down to the 19<sup>th</sup> floor (on the west side of the building) and some which continue to the 18<sup>th</sup> floor (on the east side) are HSS 8x8x3/8. The cooling tower platform consists of horizontal members ranging from W8s – W18s and HSS 8x8s as the columns. Figures 5 and 6 show the window washing platform and 19<sup>th</sup> floor framing plans.

|              |                                      | f'c Columns |
|--------------|--------------------------------------|-------------|
| Floor        | f' <sub>c</sub> Beams and Slabs(psi) | (psi)       |
| B3           | 4000                                 | 8000        |
| B2           | 5950                                 | 8000        |
| B1           | 5950                                 | 8000        |
| 1            | 5950                                 | 8000        |
| 2            | 5950                                 | 8000        |
| 3            | 5950                                 | 8000        |
| 4            | 5950                                 | 8000        |
| 5            | 5950                                 | 8000        |
| 6            | 5000                                 | 5950        |
| 7            | 5000                                 | 5950        |
| 8            | 4000                                 | 5000        |
| 9            | 4000                                 | 5000        |
| 10           | 4000                                 | 4000        |
| 11           | 4000                                 | 4000        |
| 12           | 4000                                 | 4000        |
| 13           | 4000                                 | 4000        |
| 14           | 4000                                 | 4000        |
| 15           | 4000                                 | 4000        |
| 16           | 4000                                 | 4000        |
| Interstitial | 4000                                 | 4000        |
| 17           | 4000                                 | 4000        |
| 18           | 4000                                 | 4000        |
| 19           | 4000                                 | 4000        |

Figure 4: Concrete Strength per floor



Figure 5: Window Washing Platform Framing Plan





# **Building Loads**

### Dead and Live Loads

There are a number of different occupancies within this building. The lower floors feature more business and office-like occupancies while the labs and mechanical rooms present more unique circumstances. The table below in Figure 7 shows some typical loads seen throughout the building.

| LEVEL                                 | SLAB    | CEILING<br>AND MECH. | PART'N. | MISC. DL. | LIVE | TOTAL<br>LOAD | REMARKS          |
|---------------------------------------|---------|----------------------|---------|-----------|------|---------------|------------------|
| VIVARIUM                              | 160     | 20                   | 60      | 5         | 60   | 305           | -                |
| VARIUM MEZZ.                          | VARIES  | 10                   | -       | 15        | 50   | VARIES        | OR EQUIP.        |
| B1                                    | VARIES  | 30                   | 10      | 15        | 150  | VARIES        | OR EQUIP.        |
| LOADING DOCK                          | 150     | 10                   | 60      | 5         | 400  | 625           | +4" TOPPING SLAB |
| SIDEWALK                              | 150     | 10                   | -       | 50        | 600  | 810           | -                |
| LOBBY                                 | 140     | 10                   | -       | 25        | 100  | 275           | -                |
| AUDITORIUM                            | 140     | 10                   | 12      | 15        | 100  | 277           | -                |
| LABORATORY                            | 160     | 10                   | 12      | 5         | 60   | 247           | -                |
| OFFICES                               | 160     | 10                   | 12      | 5         | 50   | 237           | · -              |
| MECHANICAL                            | 160     | 30                   | 12      | 5         | 150  | 357           | OR EQUIP.        |
| CORRIDOR                              | VARIES  | 10                   | 12      | 5         | 100  | VARIES        | -                |
| INTERSTITIAL                          | 130     | 30                   | -       | 5         | 50   | 195           | -                |
| DATA CENTER                           | 150     | 10                   | 12      | 15        | 300  | 487           | -                |
| ROOF                                  | 130     | 30                   | -       | 15        | 30   | 205           | OR EQUIP.        |
| STORAGE                               | VARIES  | 10                   | 12      | 5         | 150  | VARIES        | -                |
| FACADE LOADS:<br>BLOCK AN<br>DOUBLE G | D BRICK | 9<br>IN WALL~~~ 4    | 5 PSF   |           |      |               |                  |

Figure 7: Loading Schedule

### Snow Load

The snow load was calculated using ASCE 7-05 section 7.3. The actual roof surfaces are either steel grating on the structural steel members or the concrete slab of the 18<sup>th</sup> or 19<sup>th</sup> floors, so the roof was assumed to be flat for the calculation of snow load. From Figure 7-1 it was determined that the ground snow load in New York City is 25 psf. Following the

procedure, the roof snow load was calculated to be 17.3 psf. According to the loading schedules in the plans, the roof live load is 30 psf, which would therefore control in design.

### Wind Load

ASCE 7-05 was used to calculate wind pressures and story forces transferred to the Main Wind Force Resisting System (MWFRS) for both the East-West and North-South direction.

The basic wind speed was determined to be 110 mph in New York City from Figure 6-1C. The plans list the exposure category as B, and the occupancy category was determined to be III because it is an educational research lab and part of Weill Cornell Medical College.

The structure was assumed to be rigid, which meant the gust effect factor, G=.85. An excel spreadsheet was created to carry out the calculations of wind pressure and force for each story on the windward and leeward sides (Figures 8 and 9). Another excel spreadsheet was created to calculate the total base shear and overturning moment (Figure 11). Wind pressure diagrams were drawn to show how pressure is distributed in each direction (Figure 10).

| Floor                                                                                   | Elev                                                                                                                                             | Z                                                                                                                                                                       | Kz                                                                                                                   | qz                                                                                                                                                    | Windward (psf)                                                                                                                                                         | Windward (plf)                                                                                                                                                                    | Windward (k)                                                                                                                                                      | Leeward (psf)                                                                                                                                                                                                 | Leeward (plf)                                                                                                                                                                                            | Leeward (k)                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                                                                       | 5.08                                                                                                                                             | 0.00                                                                                                                                                                    | 0.57                                                                                                                 | 17.26                                                                                                                                                 | 18.712                                                                                                                                                                 | 1309.871                                                                                                                                                                          | 9.824                                                                                                                                                             | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -7.433                                                                                                                                                                                                                                                                                                                                                                  |
| 2                                                                                       | 20.08                                                                                                                                            | 15.00                                                                                                                                                                   | 0.57                                                                                                                 | 17.26                                                                                                                                                 | 18.712                                                                                                                                                                 | 1309.871                                                                                                                                                                          | 18.884                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -14.288                                                                                                                                                                                                                                                                                                                                                                 |
| 3                                                                                       | 33.92                                                                                                                                            | 28.83                                                                                                                                                                   | 0.66                                                                                                                 | 19.98                                                                                                                                                 | 20.566                                                                                                                                                                 | 1439.587                                                                                                                                                                          | 19.914                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -13.710                                                                                                                                                                                                                                                                                                                                                                 |
| 4                                                                                       | 47.75                                                                                                                                            | 42.67                                                                                                                                                                   | 0.76                                                                                                                 | 23.01                                                                                                                                                 | 22.624                                                                                                                                                                 | 1583.715                                                                                                                                                                          | 21.908                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -13.710                                                                                                                                                                                                                                                                                                                                                                 |
| 5                                                                                       | 61.58                                                                                                                                            | 56.50                                                                                                                                                                   | 0.81                                                                                                                 | 24.53                                                                                                                                                 | 23.654                                                                                                                                                                 | 1655.779                                                                                                                                                                          | 22.905                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -13.710                                                                                                                                                                                                                                                                                                                                                                 |
| 6                                                                                       | 75.42                                                                                                                                            | 70.33                                                                                                                                                                   | 0.89                                                                                                                 | 26.95                                                                                                                                                 | 25.301                                                                                                                                                                 | 1771.082                                                                                                                                                                          | 24.500                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -13.710                                                                                                                                                                                                                                                                                                                                                                 |
| 7                                                                                       | 89.25                                                                                                                                            | 84.17                                                                                                                                                                   | 0.93                                                                                                                 | 28.16                                                                                                                                                 | 26.125                                                                                                                                                                 | 1828.733                                                                                                                                                                          | 25.297                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -13.710                                                                                                                                                                                                                                                                                                                                                                 |
| 8                                                                                       | 103.08                                                                                                                                           | 98.00                                                                                                                                                                   | 0.96                                                                                                                 | 29.07                                                                                                                                                 | 26.742                                                                                                                                                                 | 1871.971                                                                                                                                                                          | 25.896                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -13.710                                                                                                                                                                                                                                                                                                                                                                 |
| 9                                                                                       | 116.92                                                                                                                                           | 111.83                                                                                                                                                                  | 0.99                                                                                                                 | 29.98                                                                                                                                                 | 27.360                                                                                                                                                                 | 1915.210                                                                                                                                                                          | 26.494                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -13.710                                                                                                                                                                                                                                                                                                                                                                 |
| 10                                                                                      | 130.75                                                                                                                                           | 125.67                                                                                                                                                                  | 1.04                                                                                                                 | 31.49                                                                                                                                                 | 28.390                                                                                                                                                                 | 1987.274                                                                                                                                                                          | 27.491                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -13.710                                                                                                                                                                                                                                                                                                                                                                 |
| 11                                                                                      | 144.58                                                                                                                                           | 139.50                                                                                                                                                                  | 1.09                                                                                                                 | 33.00                                                                                                                                                 | 29.419                                                                                                                                                                 | 2059.338                                                                                                                                                                          | 28.488                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -13.710                                                                                                                                                                                                                                                                                                                                                                 |
| 12                                                                                      | 158.42                                                                                                                                           | 153.33                                                                                                                                                                  | 1.09                                                                                                                 | 33.00                                                                                                                                                 | 29.419                                                                                                                                                                 | 2059.338                                                                                                                                                                          | 28.488                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -13.710                                                                                                                                                                                                                                                                                                                                                                 |
| 13                                                                                      | 172.25                                                                                                                                           | 167.17                                                                                                                                                                  | 1.13                                                                                                                 | 34.22                                                                                                                                                 | 30.243                                                                                                                                                                 | 2116.989                                                                                                                                                                          | 29.285                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -13.710                                                                                                                                                                                                                                                                                                                                                                 |
| 14                                                                                      | 186.08                                                                                                                                           | 181.00                                                                                                                                                                  | 1.17                                                                                                                 | 35.43                                                                                                                                                 | 31.066                                                                                                                                                                 | 2174.641                                                                                                                                                                          | 30.083                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -13.710                                                                                                                                                                                                                                                                                                                                                                 |
| 15                                                                                      | 199.92                                                                                                                                           | 194.83                                                                                                                                                                  | 1.17                                                                                                                 | 35.43                                                                                                                                                 | 31.066                                                                                                                                                                 | 2174.641                                                                                                                                                                          | 30.083                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -13.710                                                                                                                                                                                                                                                                                                                                                                 |
| 16                                                                                      | 213.75                                                                                                                                           | 208.67                                                                                                                                                                  | 1.20                                                                                                                 | 36.33                                                                                                                                                 | 31.684                                                                                                                                                                 | 2217.879                                                                                                                                                                          | 32.252                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -14.412                                                                                                                                                                                                                                                                                                                                                                 |
| Interstitial                                                                            | 229.00                                                                                                                                           | 223.92                                                                                                                                                                  | 1.20                                                                                                                 | 36.33                                                                                                                                                 | 31.684                                                                                                                                                                 | 2217.879                                                                                                                                                                          | 28.001                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -12.512                                                                                                                                                                                                                                                                                                                                                                 |
| 17                                                                                      | 239.00                                                                                                                                           | 233.92                                                                                                                                                                  | 1.20                                                                                                                 | 36.33                                                                                                                                                 | 31.684                                                                                                                                                                 | 2217.879                                                                                                                                                                          | 34.377                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -15.361                                                                                                                                                                                                                                                                                                                                                                 |
| 18                                                                                      | 260.00                                                                                                                                           | 254.92                                                                                                                                                                  | 1.28                                                                                                                 | 38.76                                                                                                                                                 | 33.331                                                                                                                                                                 | 2333.182                                                                                                                                                                          | 44.914                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -19.078                                                                                                                                                                                                                                                                                                                                                                 |
| 19                                                                                      | 277.50                                                                                                                                           | 272.42                                                                                                                                                                  | 1.28                                                                                                                 | 38.76                                                                                                                                                 | 33.331                                                                                                                                                                 | 2333.182                                                                                                                                                                          | 40.247                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -17.096                                                                                                                                                                                                                                                                                                                                                                 |
| Penthouse                                                                               | 294.50                                                                                                                                           | 289.42                                                                                                                                                                  | 1.28                                                                                                                 | 38.76                                                                                                                                                 | 33.331                                                                                                                                                                 | 2333.182                                                                                                                                                                          | 19.832                                                                                                                                                            | -14.158                                                                                                                                                                                                       | -991.06                                                                                                                                                                                                  | -8.424                                                                                                                                                                                                                                                                                                                                                                  |
| Figure 8:                                                                               | Wind                                                                                                                                             | Load                                                                                                                                                                    | Exce                                                                                                                 | el She                                                                                                                                                | eet – East-Wes                                                                                                                                                         | st Direction                                                                                                                                                                      |                                                                                                                                                                   |                                                                                                                                                                                                               |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                         |
| Floor                                                                                   | Elev                                                                                                                                             | Z                                                                                                                                                                       | Kz                                                                                                                   | qz                                                                                                                                                    | Windward (psf)                                                                                                                                                         | Windward (plf)                                                                                                                                                                    | Windward (k)                                                                                                                                                      | Leeward (psf)                                                                                                                                                                                                 | Leeward (plf)                                                                                                                                                                                            | Leeward (k)                                                                                                                                                                                                                                                                                                                                                             |
| 1                                                                                       | 5.08                                                                                                                                             | 0.00                                                                                                                                                                    | 0.57                                                                                                                 | 17.26                                                                                                                                                 | 18.712                                                                                                                                                                 | 4771.674                                                                                                                                                                          | 35.788                                                                                                                                                            | -23.448                                                                                                                                                                                                       | -1641.37                                                                                                                                                                                                 | -12.310                                                                                                                                                                                                                                                                                                                                                                 |
| 2                                                                                       | 20.08                                                                                                                                            | 15.00                                                                                                                                                                   | 0.57                                                                                                                 | 17.26                                                                                                                                                 | 18.712                                                                                                                                                                 | 4771.674                                                                                                                                                                          | 68.792                                                                                                                                                            | -23.448                                                                                                                                                                                                       | -1641.37                                                                                                                                                                                                 | -23.663                                                                                                                                                                                                                                                                                                                                                                 |
| 3                                                                                       | 33.92                                                                                                                                            | 28.83                                                                                                                                                                   | 0.66                                                                                                                 | 19.98                                                                                                                                                 | 20.566                                                                                                                                                                 | 5244.209                                                                                                                                                                          | 72.545                                                                                                                                                            | -23.448                                                                                                                                                                                                       | -1641.37                                                                                                                                                                                                 | -22.706                                                                                                                                                                                                                                                                                                                                                                 |
| 4                                                                                       | 47.75                                                                                                                                            | 42.67                                                                                                                                                                   | 0.76                                                                                                                 | 23.01                                                                                                                                                 | 22 624                                                                                                                                                                 | 5760 247                                                                                                                                                                          | 70,000                                                                                                                                                            |                                                                                                                                                                                                               |                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                         |
| 5                                                                                       | 61.58                                                                                                                                            |                                                                                                                                                                         |                                                                                                                      |                                                                                                                                                       | 22.021                                                                                                                                                                 | 5709.247                                                                                                                                                                          | 79.808                                                                                                                                                            | -23.448                                                                                                                                                                                                       | -1641.37                                                                                                                                                                                                 | -22.706                                                                                                                                                                                                                                                                                                                                                                 |
| 6                                                                                       |                                                                                                                                                  | 50.50                                                                                                                                                                   | 0.81                                                                                                                 | 24.53                                                                                                                                                 | 23.654                                                                                                                                                                 | 6031.766                                                                                                                                                                          | 79.808<br>83.439                                                                                                                                                  | -23.448<br>-23.448                                                                                                                                                                                            | -1641.37<br>-1641.37                                                                                                                                                                                     | -22.706<br>-22.706                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                         | 75.42                                                                                                                                            | 70.33                                                                                                                                                                   | 0.81<br>0.89                                                                                                         | 24.53<br>26.95                                                                                                                                        | 23.654<br>25.301                                                                                                                                                       | 6031.766<br>6451.797                                                                                                                                                              | 79.808<br>83.439<br>89.250                                                                                                                                        | -23.448<br>-23.448<br>-23.448                                                                                                                                                                                 | -1641.37<br>-1641.37<br>-1641.37                                                                                                                                                                         | -22.706<br>-22.706<br>-22.706                                                                                                                                                                                                                                                                                                                                           |
| 7                                                                                       | 75.42<br>89.25                                                                                                                                   | 56.50<br>70.33<br>84.17                                                                                                                                                 | 0.81<br>0.89<br>0.93                                                                                                 | 24.53<br>26.95<br>28.16                                                                                                                               | 23.654<br>25.301<br>26.125                                                                                                                                             | 6031.766<br>6451.797<br>6661.813                                                                                                                                                  | 79.808<br>83.439<br>89.250<br>92.155                                                                                                                              | -23.448<br>-23.448<br>-23.448<br>-23.448                                                                                                                                                                      | -1641.37<br>-1641.37<br>-1641.37<br>-1641.37                                                                                                                                                             | -22.706<br>-22.706<br>-22.706<br>-22.706                                                                                                                                                                                                                                                                                                                                |
| 7<br>8                                                                                  | 75.42<br>89.25<br>103.08                                                                                                                         | 56.50<br>70.33<br>84.17<br>98.00                                                                                                                                        | 0.81<br>0.89<br>0.93<br>0.96                                                                                         | 24.53<br>26.95<br>28.16<br>29.07                                                                                                                      | 23.654<br>25.301<br>26.125<br>26.742                                                                                                                                   | 6031.766<br>6451.797<br>6661.813<br>6819.324                                                                                                                                      | 79.808<br>83.439<br>89.250<br>92.155<br>94.334                                                                                                                    | -23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448                                                                                                                                                           | -1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37                                                                                                                                                 | -22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706                                                                                                                                                                                                                                                                                                                     |
| 7<br>8<br>9                                                                             | 75.42<br>89.25<br>103.08<br>116.92                                                                                                               | 56.50<br>70.33<br>84.17<br>98.00<br>111.83                                                                                                                              | 0.81<br>0.89<br>0.93<br>0.96<br>0.99                                                                                 | 24.53<br>26.95<br>28.16<br>29.07<br>29.98                                                                                                             | 23.654<br>25.301<br>26.125<br>26.742<br>27.360                                                                                                                         | 6031.766<br>6451.797<br>6661.813<br>6819.324<br>6976.836                                                                                                                          | 79.808   83.439   89.250   92.155   94.334   96.513                                                                                                               | -23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448                                                                                                                                                | -1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37                                                                                                                                     | -22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706                                                                                                                                                                                                                                                                                                          |
| 7<br>8<br>9<br>10                                                                       | 75.42<br>89.25<br>103.08<br>116.92<br>130.75                                                                                                     | 56.50<br>70.33<br>84.17<br>98.00<br>111.83<br>125.67                                                                                                                    | 0.81<br>0.89<br>0.93<br>0.96<br>0.99<br>1.04                                                                         | 24.53<br>26.95<br>28.16<br>29.07<br>29.98<br>31.49                                                                                                    | 23.654<br>25.301<br>26.125<br>26.742<br>27.360<br>28.390                                                                                                               | 6031.766<br>6451.797<br>6661.813<br>6819.324<br>6976.836<br>7239.355                                                                                                              | 79.808   83.439   89.250   92.155   94.334   96.513   100.144                                                                                                     | -23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448                                                                                                                                     | -1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37                                                                                                                         | -22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706                                                                                                                                                                                                                                                                                               |
| 7<br>8<br>9<br>10<br>11                                                                 | 75.42<br>89.25<br>103.08<br>116.92<br>130.75<br>144.58                                                                                           | 56.50<br>70.33<br>84.17<br>98.00<br>111.83<br>125.67<br>139.50                                                                                                          | 0.81<br>0.89<br>0.93<br>0.96<br>0.99<br>1.04<br>1.09                                                                 | 24.53<br>26.95<br>28.16<br>29.07<br>29.98<br>31.49<br>33.00                                                                                           | 23.654<br>25.301<br>26.125<br>26.742<br>27.360<br>28.390<br>29.419                                                                                                     | 6031.766<br>6451.797<br>6661.813<br>6819.324<br>6976.836<br>7239.355<br>7501.874                                                                                                  | 79.808   83.439   89.250   92.155   94.334   96.513   100.144   103.776                                                                                           | -23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448                                                                                                                          | -1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37                                                                                                             | -22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706                                                                                                                                                                                                                                                                                    |
| 7<br>8<br>9<br>10<br>11<br>12                                                           | 75.42<br>89.25<br>103.08<br>116.92<br>130.75<br>144.58<br>158.42                                                                                 | 56.50<br>70.33<br>84.17<br>98.00<br>111.83<br>125.67<br>139.50<br>153.33                                                                                                | 0.81<br>0.89<br>0.93<br>0.96<br>0.99<br>1.04<br>1.09<br>1.09                                                         | 24.53<br>26.95<br>28.16<br>29.07<br>29.98<br>31.49<br>33.00<br>33.00                                                                                  | 23.654<br>25.301<br>26.125<br>26.742<br>27.360<br>28.390<br>29.419<br>29.419                                                                                           | 5769.247     6031.766     6451.797     6661.813     6819.324     6976.836     7239.355     7501.874     7501.874                                                                  | 79.808   83.439   89.250   92.155   94.334   96.513   100.144   103.776   103.776                                                                                 | -23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448                                                                                                               | -1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37                                                                                                 | -22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706                                                                                                                                                                                                                                                                         |
| 7<br>8<br>9<br>10<br>11<br>12<br>13                                                     | 75.42<br>89.25<br>103.08<br>116.92<br>130.75<br>144.58<br>158.42<br>172.25                                                                       | 56.50<br>70.33<br>84.17<br>98.00<br>111.83<br>125.67<br>139.50<br>153.33<br>167.17                                                                                      | 0.81<br>0.89<br>0.93<br>0.96<br>0.99<br>1.04<br>1.09<br>1.09<br>1.13                                                 | 24.53<br>26.95<br>28.16<br>29.07<br>29.98<br>31.49<br>33.00<br>33.00<br>34.22                                                                         | 23.654<br>25.301<br>26.125<br>26.742<br>27.360<br>28.390<br>29.419<br>29.419<br>30.243                                                                                 | 5769.247     6031.766     6451.797     6661.813     6819.324     6976.836     7239.355     7501.874     7501.874     7711.890                                                     | 79.808   83.439   89.250   92.155   94.334   96.513   100.144   103.776   103.776   106.681                                                                       | -23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448                                                                                                    | -1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37                                                                                     | -22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706                                                                                                                                                                                                                                                              |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                               | 75.42<br>89.25<br>103.08<br>116.92<br>130.75<br>144.58<br>158.42<br>172.25<br>186.08                                                             | 56.30<br>70.33<br>84.17<br>98.00<br>111.83<br>125.67<br>139.50<br>153.33<br>167.17<br>181.00                                                                            | 0.81<br>0.89<br>0.93<br>0.96<br>0.99<br>1.04<br>1.09<br>1.09<br>1.13<br>1.17                                         | 24.53<br>26.95<br>28.16<br>29.07<br>29.98<br>31.49<br>33.00<br>33.00<br>34.22<br>35.43                                                                | 23.654<br>25.301<br>26.125<br>26.742<br>27.360<br>28.390<br>29.419<br>29.419<br>30.243<br>31.066                                                                       | 5769.247     6031.766     6451.797     6661.813     6819.324     6976.836     7239.355     7501.874     7501.874     7711.890     7921.905                                        | 79.808   83.439   89.250   92.155   94.334   96.513   100.144   103.776   106.681   109.586                                                                       | -23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448                                                                              | -1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37                                                                         | -22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706                                                                                                                                                                                                                                                   |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15                                         | 75.42<br>89.25<br>103.08<br>116.92<br>130.75<br>144.58<br>158.42<br>172.25<br>186.08<br>199.92                                                   | 56.50<br>70.33<br>84.17<br>98.00<br>111.83<br>125.67<br>139.50<br>153.33<br>167.17<br>181.00<br>194.83                                                                  | 0.81<br>0.93<br>0.93<br>0.96<br>0.99<br>1.04<br>1.09<br>1.13<br>1.17<br>1.17                                         | 24.53<br>26.95<br>28.16<br>29.07<br>29.98<br>31.49<br>33.00<br>33.00<br>34.22<br>35.43<br>35.43                                                       | 23.654<br>25.301<br>26.125<br>26.742<br>27.360<br>28.390<br>29.419<br>29.419<br>30.243<br>31.066<br>31.066                                                             | 6031.766<br>6451.797<br>6661.813<br>6819.324<br>6976.836<br>7239.355<br>7501.874<br>7501.874<br>7501.874<br>7711.890<br>7921.905<br>7921.905                                      | 79.808   83.439   89.250   92.155   94.334   96.513   100.144   103.776   103.776   106.681   109.586   109.586                                                   | -23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448                                                                   | -1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37                                                             | -22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706                                                                                                                                                                                                                                                   |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16                                   | 75.42<br>89.25<br>103.08<br>116.92<br>130.75<br>144.58<br>158.42<br>172.25<br>186.08<br>199.92<br>213.75                                         | 36.30     70.33     84.17     98.00     111.83     125.67     139.50     153.33     167.17     181.00     194.83     208.67                                             | 0.81<br>0.93<br>0.96<br>0.99<br>1.04<br>1.09<br>1.09<br>1.13<br>1.17<br>1.17<br>1.20                                 | 24.53<br>26.95<br>28.16<br>29.07<br>29.98<br>31.49<br>33.00<br>33.00<br>34.22<br>35.43<br>35.43<br>35.43                                              | 23.654<br>25.301<br>26.125<br>26.742<br>27.360<br>28.390<br>29.419<br>29.419<br>30.243<br>31.066<br>31.066<br>31.684                                                   | 6031.766<br>6451.797<br>6661.813<br>6819.324<br>6976.836<br>7239.355<br>7501.874<br>7501.874<br>77501.874<br>77921.905<br>7921.905<br>8079.417                                    | 79.808   83.439   89.250   92.155   94.334   96.513   100.144   103.776   106.681   109.586   109.586   117.488                                                   | -23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448                                                        | -1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37                                     | -22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706                                                                                                                                                                                                                             |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>Interstitial                   | 75.42<br>89.25<br>103.08<br>116.92<br>130.75<br>144.58<br>158.42<br>172.25<br>186.08<br>199.92<br>213.75<br>229.00                               | 36.50     70.33     84.17     98.00     111.83     125.67     139.50     153.33     167.17     181.00     194.83     208.67     223.92                                  | 0.81<br>0.89<br>0.93<br>0.96<br>0.99<br>1.04<br>1.09<br>1.13<br>1.17<br>1.17<br>1.20<br>1.20                         | 24.53<br>26.95<br>28.16<br>29.07<br>29.98<br>31.49<br>33.00<br>33.00<br>34.22<br>35.43<br>35.43<br>36.33<br>36.33                                     | 23.654<br>25.301<br>26.125<br>26.742<br>27.360<br>28.390<br>29.419<br>29.419<br>30.243<br>31.066<br>31.066<br>31.684<br>31.684                                         | 3769.247     6031.766     6451.797     6661.813     6819.324     6976.836     7239.355     7501.874     7501.874     7711.890     7921.905     8079.417     8079.417              | 79.808   83.439   89.250   92.155   94.334   96.513   100.144   103.776   106.681   109.586   109.586   117.488   102.003                                         | -23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448                                             | -1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37                                     | -22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706                                                                                                                                                                                                                  |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>Interstitial<br>17             | 75.42<br>89.25<br>103.08<br>116.92<br>130.75<br>144.58<br>158.42<br>172.25<br>186.08<br>199.92<br>213.75<br>229.00<br>239.00                     | 36.30     70.33     84.17     98.00     111.83     125.67     139.50     153.33     167.17     181.00     194.83     208.67     223.92     233.92                       | 0.81<br>0.89<br>0.93<br>0.96<br>0.99<br>1.04<br>1.09<br>1.09<br>1.13<br>1.17<br>1.17<br>1.20<br>1.20<br>1.20         | 24.53<br>26.95<br>28.16<br>29.07<br>29.98<br>31.49<br>33.00<br>33.00<br>34.22<br>35.43<br>35.43<br>35.43<br>36.33<br>36.33                            | 23.654<br>25.301<br>26.125<br>26.742<br>27.360<br>28.390<br>29.419<br>29.419<br>30.243<br>31.066<br>31.666<br>31.684<br>31.684<br>31.684                               | 3769.247     6031.766     6451.797     6661.813     6819.324     6976.836     7239.355     7501.874     7501.874     7791.890     7921.905     8079.417     8079.417              | 79.808   83.439   89.250   92.155   94.334   96.513   100.144   103.776   103.776   106.681   109.586   109.586   117.488   102.003   125.231                     | -23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448                                  | -1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37                         | -22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.868<br>-20.722<br>-25.441                                                                                                                                                                                 |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>Interstitial<br>17<br>18       | 75.42<br>89.25<br>103.08<br>116.92<br>130.75<br>144.58<br>158.42<br>172.25<br>186.08<br>199.92<br>213.75<br>229.00<br>239.00<br>260.00           | 36.50     70.33     84.17     98.00     111.83     125.67     139.50     153.33     167.17     181.00     194.83     208.67     223.92     233.92     254.92            | 0.81<br>0.89<br>0.93<br>0.96<br>0.99<br>1.04<br>1.09<br>1.13<br>1.17<br>1.17<br>1.20<br>1.20<br>1.20<br>1.28         | 24.53<br>26.95<br>28.16<br>29.07<br>29.98<br>31.49<br>33.00<br>33.00<br>34.22<br>35.43<br>36.33<br>36.33<br>36.33<br>36.33<br>36.33                   | 23.654<br>25.301<br>26.125<br>26.742<br>27.360<br>28.390<br>29.419<br>29.419<br>30.243<br>31.066<br>31.066<br>31.684<br>31.684<br>31.684<br>31.684<br>33.331           | 5769.247     6031.766     6451.797     6661.813     6819.324     6976.836     7239.355     7501.874     7501.874     7711.890     7921.905     8079.417     8079.417     8499.448 | 79.808   83.439   89.250   92.155   94.334   96.513   100.144   103.776   103.776   106.681   109.586   109.586   117.488   102.003   125.231   163.614           | -23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448            | -1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37 | -22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706                                                                                                                                                |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>Interstitial<br>17<br>18<br>19 | 75.42<br>89.25<br>103.08<br>116.92<br>130.75<br>144.58<br>158.42<br>172.25<br>186.08<br>199.92<br>213.75<br>229.00<br>239.00<br>260.00<br>277.50 | 36.50     70.33     84.17     98.00     111.83     125.67     139.50     153.33     167.17     181.00     194.83     208.67     223.92     233.92     254.92     272.42 | 0.81<br>0.89<br>0.93<br>0.96<br>0.99<br>1.04<br>1.09<br>1.13<br>1.17<br>1.17<br>1.20<br>1.20<br>1.20<br>1.28<br>1.28 | 24.53<br>26.95<br>28.16<br>29.07<br>29.98<br>31.49<br>33.00<br>33.00<br>34.22<br>35.43<br>36.33<br>36.33<br>36.33<br>36.33<br>36.33<br>38.76<br>38.76 | 23.654<br>25.301<br>26.125<br>26.742<br>27.360<br>28.390<br>29.419<br>29.419<br>30.243<br>31.066<br>31.066<br>31.684<br>31.684<br>31.684<br>31.684<br>33.331<br>33.331 | 5769.247     6031.766     6451.797     6661.813     6819.324     6976.836     7239.355     7501.874     7501.874     7711.890     7921.905     8079.417     8079.417     8499.448 | 79.808   83.439   89.250   92.155   94.334   96.513   100.144   103.776   103.776   106.681   109.586   109.586   107.488   102.003   125.231   163.614   146.615 | -23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448<br>-23.448 | -1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37<br>-1641.37 | -22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-22.706<br>-23.868<br>-20.722<br>-25.441<br>-31.596<br>-28.314 |

Figure 9: Wind Load Excel Sheet – North-South Direction



Figure 10: Wind Pressure Diagram

| Floor        | Force (k) | Height (ft) | Moment (k-ft) | Floor        | Force (k) | Height (ft) | Moment (k-ft) |
|--------------|-----------|-------------|---------------|--------------|-----------|-------------|---------------|
| 1            | 17.257    | 0.00        | 0.00          | 1            | 48.098    | 0.00        | 0.00          |
| 2            | 33.172    | 15.91       | 527.92        | 2            | 92.455    | 44.36       | 4101.00       |
| 3            | 33.624    | 16.37       | 550.32        | 3            | 95.250    | 47.15       | 4491.31       |
| 4            | 35.618    | 18.36       | 653.97        | 4            | 102.513   | 54.42       | 5578.34       |
| 5            | 36.615    | 19.36       | 708.77        | 5            | 106.145   | 58.05       | 6161.42       |
| 6            | 38.210    | 20.95       | 800.59        | 6            | 111.955   | 63.86       | 7149.21       |
| 7            | 39.007    | 21.75       | 848.41        | 7            | 114.861   | 66.76       | 7668.42       |
| 8            | 39.605    | 22.35       | 885.11        | 8            | 117.040   | 68.94       | 8068.91       |
| 9            | 40.203    | 22.95       | 922.52        | 9            | 119.218   | 71.12       | 8478.90       |
| 10           | 41.200    | 23.94       | 986.47        | 10           | 122.850   | 74.75       | 9183.30       |
| 11           | 42.197    | 24.94       | 1052.41       | 11           | 126.481   | 78.38       | 9914.09       |
| 12           | 42.197    | 24.94       | 1052.41       | 12           | 126.481   | 78.38       | 9914.09       |
| 13           | 42.995    | 25.74       | 1106.58       | 13           | 129.387   | 81.29       | 10517.70      |
| 14           | 43.792    | 26.54       | 1162.03       | 14           | 132.292   | 84.19       | 11138.20      |
| 15           | 43.792    | 26.54       | 1162.03       | 15           | 132.292   | 84.19       | 11138.20      |
| 16           | 46.663    | 29.41       | 1372.20       | 16           | 141.356   | 93.26       | 13182.70      |
| Interstitial | 40.513    | 23.26       | 942.16        | Interstitial | 122.725   | 74.63       | 9158.60       |
| 17           | 49.739    | 32.48       | 1615.59       | 17           | 150.672   | 102.57      | 15455.09      |
| 18           | 63.992    | 46.73       | 2990.63       | 18           | 195.211   | 147.11      | 28718.00      |
| 19           | 57.343    | 40.09       | 2298.67       | 19           | 174.929   | 126.83      | 22186.47      |
| Penthouse    | 28.256    | 11.00       | 310.79        | Penthouse    | 86.197    | 38.10       | 3284.03       |
| Total        | 855.990   |             | 21949.58      | Total        | 2548.409  |             | 205487.98     |

Figure 11: Wind Load Base Shear and Overturning Moment – East-West Direction (to the left), and North-South (to the right)

### Seismic Load

For the seismic load evaluation of the Medical Research Building, the Equivalent Lateral Force Method as outlined in ASCE 7-05 was employed. The Site Class was determined to be A from Table 20.3-1 because the building sits on hard rock. An occupancy category of III resulted in an importance factor of 1.25 from Table 11.5-1. The Seismic Design Category based on short period response yielded Category B (Table 11.6-1), while the SDC based on 1 second period response yielded Category A (Table 11.6-2). To be conservative, Category B (the more severe category) was chosen. The Seismic Response Modification Factor, R, was labeled 4 on the drawings, which corresponds to the lateral resisting system of Ordinary Reinforced Concrete Shear Walls in Table 12.2-1.

The remainder of the procedure was followed resulting in a seismic base shear of approximately 980 kips. A spreadsheet developed in AE 597A was used to calculate the forces and moment at each floor as well as the overall overturning moment, calculated as 191,420 kip-ft.

# Gravity Load Spot Checks

# Typical Beam

A typical beam on the 15<sup>th</sup> floor, beam TB2, located between columns B1 and B2 and spanning 21'-0" was checked for strength and spacing. The beam was 24x36 and had 7-#7 bars on the bottom and 7-#6 bars on the top. The beam was found to pass for strength as well as minimum spacing and minimum width. The flexural capacity of the beam was determined to be approximately 15% above the maximum moment from the load.

### Typical Column

A typical column on the  $15^{th}$  floor, column B4, 13'-10" tall was assessed for strength assuming that the column, under gravity loads, is subjected to pure axial compression. The column was 36x24 and contained 16-#7 bars. An excel spreadsheet was created to determine the axial load on the column. The beam was found to pass, as the determined compressive capacity of the column was over 3 times the calculated axial load on the column. This discrepancy is significant and could have resulted either from an error in load calculations or perhaps the column isn't only subjected to pure axial load. It should also be mentioned that the assumption was made that fs = fy. If this is not the case under the axial load, then that would affect the result of the axial capacity of the column, but due to the area of concrete being much greater than the area of steel, this difference isn't significant enough to correct the difference between axial capacity and calculated load.

# Conclusion

A close examination of the Weill Cornell Medical Research Building revealed a beautiful building filled with complexity. This examination of the existing conditions, which included an evaluation of the structural systems as well as calculations of gravity and lateral loads and spot checks of typical members, resulted in the conclusion that the existing design is intricate and adequate.

Calculations of snow loads revealed that the roof live load was the controlling load case. The determination of seismic base shear as 979.6 kips is almost exactly the 980 kip base shear listed on the drawings under design conditions. Of note regarding the wind load calculations is that the building was designed with the old New York City Building Code, which called for a design wind speed of 98 mph, whereas the new building code, referencing ASCE 7, called for a design wind speed of 110 mph. Also, from the results tabulated a comparison can be made of base shear and overturning moment from seismic loads versus wind loads. The outcome of this comparison is significant because in the North-South direction wind loads control, but in the East-West direction the seismic loads cause a greater base shear and moment. This greatly influences the design of the lateral system.

Spot checks of gravity members revealed them to be adequate for strength and spacing, but it is still to be determined if they are subjected to lateral loads. Something to also be aware of is the importance of limiting vibrations. This will be a factor in analyzing floor systems in Technical Report 2 and will also be an important design consideration.

Appendix A: Snow Load

Jonathan Coun Snow Land AE Senior Thesis ASCE 7-05 CH7 Assure: Flat Root PE=.7 CelaIPS Fig. 7-1: PS = 25 pst Table 7.2 - Le= 09 Catyony B, Fully exposed Table 7.3 - C+= 1.0 Table 7.4 - I = 1.1 Category IT Pf=.7(.9)(1.0)(1.1)(25)=/17.3ps+

# Appendix B: Seismic Load

AE Senior Mesis Slismik Lands Sorathan Com ASCE 7-05 Excitatent Latent Force method Fig 22-1: 55 = 35% for MYC Fig 22-2: 51 = 6% for MYC Table 20-3-1: Site Class A (Hard Rock) Table 11.4-1: F= - 8 => Sms = Fass = .8(.35)= .28 Table 11.4-1: F= => Sm1 = Fusi = .8(.06)= .048  $S_{DS} = \frac{2}{3}S_{MS} = \frac{2}{3}(.29) = .187$  $S_{D1} = \frac{2}{3}S_{M1} = \frac{2}{3}(.048) = .032$ Table 1-1: Occupancy Category III Table 11.5-1: I=1.25 Table 11.6-1: 50C = 0 = USE SOC= B Table 11.6-2: \$DC= A Table 12.2-1: R= 4 Tuble 12.8-2: 4=.02, XE.75 T= C+ hut = .02 (294.5) -75 = 1.42 sec .007  $C_{5} = .01 \qquad \text{calcolated separately}$   $V = C_{5} U = .01 (97, 960) = 1977.6 \text{ kps}$ Base Star  $F_{x} = C_{vx} V \qquad C_{vx} = \frac{w_{ch} k}{E_{c}} C_{ch} k^{n}$ (by interpolation) K=1.46 See spreadsheet on PS for the rest of the Calculations

|              | Height | Weight  |                  |                 |                    |                    |           |
|--------------|--------|---------|------------------|-----------------|--------------------|--------------------|-----------|
| Level        | (ft)   | (k)     | w*h <sup>k</sup> | C <sub>vx</sub> | F <sub>i</sub> (k) | V <sub>i</sub> (k) | M (k-ft)  |
| Penthouse    | 294.50 | 318.29  | 1281420          | 0.0106          | 10.42              | 10.42              | 3069.51   |
| 19           | 277.50 | 1669.14 | 6161082          | 0.0512          | 50.11              | 60.54              | 13906.32  |
| 18           | 260.00 | 4997.25 | 16772289         | 0.1393          | 136.42             | 196.96             | 35469.73  |
| 17           | 239.00 | 5402.93 | 16035778         | 0.1331          | 130.43             | 327.39             | 31173.11  |
| Interstitial | 229.00 | 3547.31 | 9891438          | 0.0821          | 80.45              | 407.84             | 18424.14  |
| 16           | 213.75 | 4091.69 | 10317278         | 0.0857          | 83.92              | 491.76             | 17937.56  |
| 15           | 199.92 | 4091.69 | 9357110          | 0.0777          | 76.11              | 567.87             | 15215.39  |
| 14           | 186.08 | 4091.69 | 8427041          | 0.0700          | 68.54              | 636.41             | 12754.83  |
| 13           | 172.25 | 4091.69 | 7528261          | 0.0625          | 61.23              | 697.65             | 10547.42  |
| 12           | 158.42 | 4091.69 | 6662105          | 0.0553          | 54.19              | 751.84             | 8584.29   |
| 11           | 144.58 | 4091.69 | 5830084          | 0.0484          | 47.42              | 799.26             | 6856.23   |
| 10           | 130.75 | 4091.69 | 5033929          | 0.0418          | 40.94              | 840.20             | 5353.54   |
| 9            | 116.92 | 4091.69 | 4275646          | 0.0355          | 34.78              | 874.98             | 4066.03   |
| 8            | 103.08 | 4091.69 | 3557602          | 0.0295          | 28.94              | 903.92             | 2982.90   |
| 7            | 89.25  | 4091.69 | 2882639          | 0.0239          | 23.45              | 927.36             | 2092.62   |
| 6            | 75.42  | 4091.69 | 2254263          | 0.0187          | 18.34              | 945.70             | 1382.81   |
| 5            | 61.58  | 4091.69 | 1676944          | 0.0139          | 13.64              | 959.34             | 839.99    |
| 4            | 47.75  | 4214.07 | 1191249          | 0.0099          | 9.69               | 969.03             | 462.67    |
| 3            | 33.92  | 4598.03 | 788815.4         | 0.0065          | 6.42               | 975.44             | 217.61    |
| 2            | 20.08  | 6402.62 | 511090.6         | 0.0042          | 4.16               | 979.60             | 83.49     |
|              |        |         |                  | Base Shear:     | 979.60             | Total Mom:         | 191420.19 |

# Appendix C: Wind Load

AE Senior Thesis ) Onathan loan ASCE 7-05 BASIZ Wind Spred (Fiz 6-10): 110 mph Exposure Category (From Plans): B Occupancy Category (Table 1-1): ITT KZ = See spratsbeet KZt=1.0 KIE. 85 (Taba 6-4) Vellomph I=1.15 (Table 6-1) 222.00256 KZKZEKJVZI See spruvsleet for cellulations Assure: Rigid Structure => 6=.85 Figure 6-5:6(pi= ±.18 Figure 6-5:6(p= -8 (undead)) P= 2 6(p - 2h (6(pi)) Figure 6-6: Cp= -5 (leenand) N-5, -.218 E-U See spreid sheet for calculations

# Appendix D: Spot Checks

# Typical Beam

|        | Denthe Con. AE Sense Tlesis Spot Clecks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|        | Typical Beam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2     |
| •      | TBZ-24×16 (7)#6 Assume Trib Area extends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Co. A |
|        | 10 JAYR 7" in the NS direction and<br>along the spen in the E-tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|        | k lacescel k TT#7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|        | $-27'' - \frac{1}{2} = \frac{1}{2} + \frac{1}{2$ |       |
| 5      | Let D= 16-1.5- 3-2(3)-15.06"<br>Let D= 16-1.5- 3-2(3)-15.06"<br>Ce Stimp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| enwy   | Certing & Mech: 12pst<br>Partitions: 10pst<br>Misco: 5pst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|        | Self-legtot: (6(24)) = 400p16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|        | Wo = 400 + (12+10+5)(2217"+25") = 1.04K/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| •      | $\frac{L_{inc} L_{oud}}{\omega_{L}} = 150 \mu s \left(\frac{2\nu' - 2''}{2} + \frac{2s'}{2}\right) = 3.57 k l f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|        | Ww= 1.2 Not 1.6 WZ = 6.76 KIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|        | Assume: Fixed ends<br>$M_{VZ} \frac{m_{VZ}^2}{12} = \frac{6.96(21)^2}{12} = 255.8 \text{ K-64}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|        | Bern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
|        | $A_{s} = \frac{7}{4} \left( \frac{6}{4} \right) + 7 \left( \frac{44}{4} \right) = 7.28 in^{2}$<br>fiz 4000 ps; => p; = 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
|        | Asymon = 3 The bud 2 200 bud 2 Ty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
|        | Asmin = 35000 (20)(13.56) > 200 (24)(13.56)<br>60000 (20)(13.56) > 60000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
|        | Again = 1.03 22 2 1.08 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
|        | As, min = 1.08 m2 2 7.28.m2 0/5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| in and | Min Spaces = db = 5 = .875"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| •      | 1/3 Azy Size = (-3)"<br>Le - ASKine (" Starte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|        | $b_{\min} = 2(1.5) + 2(\frac{4}{2}) + 7(\frac{1}{5}) + 6(1.33) = 18.1'' 2b_{\nu} = 24'' \frac{5k}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -     |

Typical Beam (cont'd)

AE Seria Thesis Spot Checks Jonathan Coun Bean Stragth 7.28(60) 5.35 in 5.35 = 6.29 m 2) - - - (13.56 - 6.29) = . 00 547 00347 =7 \$= .65 +.25 ØMn = ØAsty (d- 2) = .74 (7.28) (60) (13.56 - 5.55) ØMn = [293.2 K-f+] \$ Ma = 293.2 k-6+ > Ma = 255.8 E-++ Bean Passes

## Typical Column

Jonathan Coan. AE Senior Thesis Spot Checks Typical Column 16)#7 Londs on Colama Dend (pst) Live (ASF) 19 th Floor: 105 13th Floor; 57 150 17th Floor: 97 150 Interstitial : 47 150 16th Floor : 27 60 Louds calculated in spreedsheet on next page Axial Lordon Column = 941.9 Kirs Compressie Strength: Agt = 16(.6) = 9.6 in 2 Fic = 4000 psi Assume: Fy=60000psi Assure: po. 9 ØPo= .9(.85) Fc (6h-Ast) + Ast ty ØPo= .9(.85) (4) (36(24)-9.6) + 9.6 (60) ØPo= 3190 kips DRO=3190K > PN = 941.9 K 015

# Appendix E: Lateral Force Resisting Elements

